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Abstract 

 

 

The introduction of new mobility services, such as bike-sharing, has profoundly 

transformed urban mobility. These services have been adopted for their potential to 

improve efficiency, reduce congestion, and lower pollution by enhancing 

complementarities with public transport. However, the market dynamics between new 

services and public transport remains unclear. This study leverages a natural 

experiment based on an extemporaneous incident that temporarily shut down 

operations in Mexico City’s subway network. Using geolocation data to analyze the 

spatial relationship between bike-sharing and subway stations, I identify bike journeys 

that substitute or complement public transport. The evidence suggests a substantial 

increase in the degree of substitution to bike-sharing during subway disruptions. 

Furthermore, following the restoration of subway service, both overall demand for 

bike-sharing and its complementarity with public transit increase. Lastly, I present 

evidence suggesting that this expansion is associated with a rise in subway ridership. 

These findings have important implications for the future of urban mobility, providing 

robust empirical insights for developing a resilient, efficient, and sustainable transport 

system.  

 

Keywords: Sharing-mobility; Bike-sharing; Public transport substitution; Public transport 

disruption; Natural experiment. 

JEL classification : D90, L92, R4, R41, R42. 
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1. Introduction 

 

The car-oriented paradigm that has dominated urban transportation over the past seventy 

years has led to economic, social, and environmental costs associated with traffic 

congestion, both local and global pollution, and spatial inequalities. In response, cities are 

increasingly adopting new mobility services, such as ride-sharing and ride-hailing, to 

address these challenges. These services have potential to reduce car dependency by 

complementing public transportation, addressing first- and last-mile connectivity issues, and 

improving accessibility (Shaheen & Cohen, 2019; Shaheen & Chan, 2016; ITF, 2021; Meng 

et al., 2020). However, the extent to which these new mobility services may substitute public 

transport remains an open question in the literature, with significant implications for the 

future organization of urban mobility. 

 In this paper, I focus on station-based bike-sharing models—a recent innovation that 

allows riders to borrow bikes from docking stations and return them to any other dock near 

their destination. Like other shared mobility services, this model enables users to access 

transport on a short-term, as-needed basis (Shaheen & Cohen, 2019). Additionally, bike-

sharing has gained popularity among governments due to its potential to address the “last-

mile” problem by improving connectivity to public transport and encouraging multimodal 

travel behavior (Shaheen & Chan, 2016). However, the question of whether bike-sharing 

complements or substitutes public transport remains open, as empirical studies have 

produced mixed results. Many studies associate bike-sharing with increased public transport 

ridership, suggesting a complementary relationship (Ma et al., 2015; Ashraf et al., 2021; 

Radzimski & Dzięcielski, 2021). Conversely, some research points to public transport 

substitution, with findings of decreased public transport ridership, particularly in urban 

centers with a high diversity of activities (Campbell et al., 2016; Campbell & Brakewood, 

2017). Only a handful of studies have explored the possibility of a dual relationship in which 

bike-sharing provides both complementary and substitutive journeys (Shaheen et al., 2011; 

Martin & Shaheen, 2014).  

 This paper provides empirical evidence by examining an extemporaneous incident that 

shut down operations in Mexico City’s subway network on January 9, 2021. The analysis 

has three main objectives. First, it aims to causally determine the extent to which bike-

sharing substitutes or complements public transport by leveraging the spatial relationship 
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between docking and subway stations. Second, it examines the short- and long-term effects 

of transportation network disruptions on bike-sharing adoption. Third, it investigates 

whether increased bike-sharing adoption leads to a reduction in subway ridership. 

 The central hypothesis of this study is that docking stations located within close 

proximity to public transport stations exhibit a higher degree of substitution compared to 

those outside the subway system's spatial coverage. This is because commuters can fully 

replace subway trips with bike-sharing when docking stations are within easy reach of 

subway stations. In cases of service disruptions, integrated docking stations may enable 

users to bridge interrupted connections within the transit network. Additionally, research 

has shown that disruptions can encourage users to develop new habits, impacting subway 

ridership (Goodwin, 1977; Chen & Chao, 2011; Xin et al., 2019). 

 The Mexican context is particularly useful for assessing this hypothesis. First, the 

extemporaneous variation in the supply of subway services allows a natural experimental 

setting that allows for causal identification of the impact of public transport disruptions. 

Second, Mexico City’s bike-sharing model is partially integrated with the urban mobility 

system, with docking stations located both within and beyond the subway system’s spatial 

coverage. Third, subway lines unaffected by the incident remained operational throughout 

the study period. These factors, along with the fact that only a subset of docking stations is 

near disrupted subway stations, allow for analysis of changes in the degree of 

complementarity between the two modes in response to network disruptions. Fourth, the 

available data enables comparison across three relevant time periods: before, during, and 

after the disruption, facilitating assessment of time-varying effects. Finally, bike-sharing 

data in Mexico City is open source, providing detailed information on every bike journey, 

including the geolocation of docking stations. This data makes it feasible to study the spatial 

integration of bike-sharing with public transport. 

 The findings presented here suggest that public transport disruptions are associated with 

increased demand for bike-sharing. On average, disruptions add approximately 3,600 bike-

sharing trips per week, equivalent to 30.4% of daily bike-sharing journeys and 6.4% of 

weekly journeys prior to the disruption. Another noteworthy comparison is that the 

additional daily trip after the incident is close to 10.5% of the total bike-sharing fleet (6,800 

bikes). Regarding integration with public transport, the evidence indicates that effects are 

stronger for docking stations within the spatial coverage of the transit network. Specifically, 
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a 100-meter reduction in the distance between a docking station and the nearest subway 

station correlates with a 9.8% increase in the daily average trips per docking station. 

 Using geolocation data from origin and destination docking stations, I examined how the 

effects vary based on the degree of substitution or complementarity between bike-sharing 

and public transport. I identified substitution trips as bike-sharing journeys that both start 

and end within the spatial coverage of the subway network. In contrast, I identified 

complementary journeys as those that either start or end beyond the subway's spatial 

coverage. Results suggest that substitutional bike-sharing trips increased during the weeks 

of disruption, while trips complementing public transport decreased. This trend held 

constant for both first- and last-mile connections. Overall, the evidence indicates that 

commuters shifted to bike-sharing for trips that would have otherwise been completed by 

subway. Similarly, a lower level of complementarity between the two transport modes aligns 

with reduced network connectivity during the disruption. 

 In terms of long-term effects, estimates indicate that public transport disruptions are 

linked to a sustained increase in bike-sharing demand post-disruption. Following the 

subway’s reopening, the relationship between bike-sharing and public transport showed a 

higher degree of complementarity for all trip types (first- and last-mile connections) and an 

increase in bike-sharing journeys substituting subway trips, although to a lesser extent than 

during the disruption period. These findings suggest that public transport disruptions led to 

a lasting shift toward bike-sharing. 

 One consideration in interpreting these findings is whether the observed effects truly 

reflect commuters shifting from public transport to bike-sharing. While higher levels of 

complementarity between the two modes can encourage multimodal behavior and reduce 

car dependency, disruptions might also trigger undesired modal shifts. To clarify this, I 

analyzed the relationship between bike-sharing usage and subway ridership displacement 

during network disruptions. Using spatial correlations between the two modes, my findings 

indicate that a 10% increase in bike-sharing journeys during disruptions raises subway 

inflow at integrated stations by 1.2%. After system restoration, the positive relationship 

persists, though the effect size decreases to 0.3%. 

 My findings contribute to the public debate on the development of multimodal transport 

systems. First, the evidence highlights the complex relationship between bike-sharing and 

public transport. A well-integrated bike-sharing system not only complements public transit 
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by addressing the first- and last-mile dilemma, but it also offers a viable alternative for 

certain subway trips. Importantly, this substitutive capacity should not be seen as a 

drawback; a degree of substitution is desirable in designing resilient transport systems 

capable of handling disruptions. In this way, a well-integrated bike-sharing system helps 

safeguard public transport against unexpected shocks. Second, cities could leverage the 

importance of integrated docking stations to develop a rebate system that promotes 

intermodal travel. Third, policies that encourage users to try bike-sharing could further 

foster multimodal behavior. For instance, offering a trial period free of charge may 

incentivize users to experience bike-sharing as an alternative to private cars. Finally, the 

findings suggest that investment in the proper infrastructure is essential for enhancing the 

complementarity between bike-sharing and public transit. 

 The rest of the paper is organized as follows. Section 2 presents the related literature with 

a focus on the relationship between public transport and bike-sharing. Context about urban 

transportation in Mexico City and details on the incident that motivates this work are 

presented in Section 3. In Sections 4 and 5, I describe the data and the empirical strategy. 

Main results and robustness tests are reported in Sections 6 and 7.  In Section 8, I provide 

additional evidence about the impact of disruption on the dynamics between both transport 

modes. Section 9 outlines the discussion and concludes. 

 

2. Related literature 

 

The findings presented in this article add to a nascent literature on new mobility modes, 

notably to the literature of station-based bike-sharing services (see Teixeira, et al. (2021) for 

a compelling review). The empirical evidence available falls in three categories: adoption 

and modal shift, bike-sharing impact on transport-related concerns, and synergies with other 

modes of transport. This paper contributes to the latter strand as it aims to address to what 

extent bike-sharing substitutes public transport. 

The evidence available so far shows mixed results. Some studies have found evidence 

of complementarities between both transport modes (Ma et al., 2015; Ashraf et al., 2021; 

Radzimski & Dzięcielski, 2021), others have found evidence of substitution (Campbell et 

al., 2016; Campbell & Brakewood, 2017), and a few have argued in favor of a dichotomic 
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relationship, i.e., when bike-sharing complements and substitutes public transport (Shaheen 

et al., 2011; Martin & Shaheen, 2014).  

One of the very first studies exploring the dynamics between public transit and bike-

sharing is the work by Martin & Shaheen (2014). Analyzing survey data from Washington 

DC and Minneapolis and mapping geocoded home and work locations, the authors 

determine the conditions under which commuters shift towards and away from bus and rail 

using bike-sharing. They find that bike-sharing substitutes bus and rail transit in high density 

areas and complements it in suburban low-density areas, which, according to the authors, 

might be evidence of bike-sharing serving as a first/last-mile connection. In a subsequent 

work, Ma, et al. (2015) find a positive correlation between public transit and bike-sharing 

ridership after studying the Capital Bikeshare (CaBi) program in Washington, D.C. 

Moreover, the authors discuss to what extent the spatial integration between stations is a 

critical component to study dynamics between both modes of transport. They find that 

docking stations located close to subway stations produce more trips suggesting that public 

transport is an important feeder for bike-sharing.  

In contrast, Campbell & Brakewood (2017) are the first to causally identify a decrease 

in bus ridership associated with the introduction of bike-sharing in New York City. The 

authors exploit spatiotemporal differences in the construction of docking stations to estimate 

a difference-in-difference design comparing bus routes affected by the construction of 

docking stations with those not affected by the program. However, most of the evidence 

available is limited to stated preferences, short time coverage, and it is restricted to US cities. 

The unique analysis providing causal estimates focuses on the impact of bus ridership. The 

evidence presented in this paper is, to the best of my knowledge, the first to exploit a natural 

experiment to study subway substitution to station-based bike-sharing. In addition, I use 

origin-destination data at journey level to reconcile the dichotomic relationship between 

both transport modes identifying fluctuations in both complementary and substitution 

journeys. Furthermore, I study the evolution of the effects over time and discuss the role of 

habits for modal shift. 

 My methodology to distinguish complementary and substitution journeys is related to the 

paper by Fan & Zheng (2020). Estimating a difference-in-difference model, the authors find 

complementarities in the interaction between subway ridership and the intensity of use of 

dockless bike-sharing in Beijing. The authors collected data during two weeks after the 



 

Page 7 sur 51 

 

 

introduction of the program in 2017. My paper differs in terms of the quasi-experimental 

design, the business model studied, and time coverage. I exploit as a natural experiment an 

extemporaneous shock in the provision of subway services to study the interaction between 

public transport and the station-based bike-sharing modes. Fan & Zheng (2020) instead, 

focus on dockless (or free-floating) bike-sharing services who exhibit different 

spatiotemporal patterns to those demonstrated by docked bike-sharing services (McKenzie, 

2019).  

 This paper is also informative about commuters behavior during public transport 

disruptions, a strand that has a long tradition in transport economics (van Exel & Rietveld, 

2001; Zhu & Levinson, 2012; Anderson, 2014; Larcom et al., 2017); some recent research 

has focused on car-sharing (Tyndall, 2019) and carpooling (Yeung & Zhu, 2022). However, 

very few is known about the role of bike-sharing during network disturbances. Saberi, et al. 

(2018) conduct a spatial-temporal descriptive analysis to provide evidence of bike-sharing 

patterns before, during, and after the strike in the London Tube on July 8th – 10th, 2015. The 

authors find an increase in the number and duration of bike journeys during disruption. They 

also find larger concentrations of highly used docking stations near the Tube and in London 

urban core. Younes, et al. (2019) study different rail transit closures in Washington, D.C. 

that happened between 2016 and 2017. The authors estimate an autoregressive Poisson time 

series model using journey level data to find that disruptions are associated with an increase 

in bike-sharing ridership in the vicinity of the affected subway stations. In addition, the 

authors discuss the possibility of bike-sharing as a first/last mile solution rather than as a 

substitute for public transit after inspecting the spatial distribution of journeys using a kernel 

density estimation. By analogy, I look at the impact of public transit disruption on bike-

sharing ridership in an equivalent way. However, I provide robust empirical evidence 

estimating a quasi-experimental design exploiting an extemporaneous shock in public 

transport provision. 

Finally, the results presented here provide evidence about public transit disruption 

management and the design of resilient transport networks (Zhu & Levinson, 2012; Zhang 

et al., 2021). Public transport disruptions are increasing in number due to the aging of 

subway systems around the world, forcing governments to find solutions to bridge 

disruptions using alternative transport modes. According to Zhang, et al., (2021), ride-

sharing services could help by providing additional capacity to public transport. However, 
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the role of new mobility services in disruption management is largely unknown. This paper 

contributes to filling this gap in the literature by identifying the effects of disruptions on 

bike-sharing journeys that served to replace subway itineraries. 

 

3. Case Study: Mexico City  

 

Mexico City has a consolidated public bike-sharing system called ECOBICI where users 

undocked and docked bicycles in different stations distributed within a predetermine 

geographic region in the city (see Figure 1). The system was introduced in 2010 with the 

aim of complementing public transport providing more alternatives to commute. In 2021, 

ECOBICI managed 480 docking stations and a fleet-size of almost 6,800 bicycles (340 are 

electric). The profile of users is highly educated (86% bachelor of higher) young (40% have 

25 to 35 years old) males (63%), as it is the case in other bike-sharing systems (SEMOVI, 

2020). To use a bike, citizens must subscribe to one of the following plans: annual (27 

USD1), weekly (20 USD), three day (12 USD), or one day (6 USD). Users are allowed to 

ride for 45 minutes (additional minutes cost extra fees). In the case of annual plans, the price 

allows users to access a low-cost transport service with a cost per trip close to 0.1 USD.2 To 

the date covered in this study, there are more than 170 thousand users registered. 

 It is noteworthy that the city announced, at the end of 2021, a plan to expand the system 

by adding 207 stations and 2,300 bicycles. Even if such expansion plan goes beyond the 

scope of this paper, it is important to point out the relevance of ECOBICI in the urban 

plannings for the city. 

 Mexico City’s backbone public transport is the subway network. It is formed by twelve 

lines connecting 195 stations and covering more than 226 km of tracks. The network serves 

more than 1.6 billion users annually (the second largest subway system in America after 

New York City). It is operated by Sistema de Transporte Colectivo (in Spanish), a public 

body decentralized from the local government. It is designed and managed in the basis of 

universality, therefore, the price per journey is relatively low (5 MXN, ≈0.25 USD) and no 

other pricing scheme exists.  

  

 
1 Exchange rate used 1 USD = 19.5 MXN.  
2 Equal to 27 USD over 270 working days in a year. 
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Figure 1. ECOBICI's docking stations and 

Mexico City’s subway system 

Figure 2. Disrupted lines after the fire on 

January 9th, 2021 

  
Note: The Figure reports the location of ECOBICIS’s 

docking stations (green dots) and their spatial relationship 

with Mexico City’s subway system (solid lines). The small 

square at the bottom shows the geographic coverage of 

ECOBICI. 

Note: The Figure reports the subway lines that stop 

operations after the fire in Mexico City’s subway 

headquarters on January 9th, 2021. Lines 4, 5, and 6, were 

restored 3 days after the incident. Lines 1, 3, and 2, 

reopened operations on January 25th, February 1st, and 

February 8th, 2021, respectively. 
  

 A crucial point for this article is the dynamics between these two modes of transport. The 

survey conducted by ECOBICI in 2020 revealed that 45% of users complement their 

journey with the subway. Moreover, 11.9% would have completed the same itinerary in the 

absence of ECOBICI (SEMOVI, 2020).3 Regarding the spatial relationship, as noticed in 

Figure 1, ECOBICI’s stations are located within a specific region of the city interacting with 

seven subway lines (1 to 3, 7 to 9, and 12). Those lines account for almost 74% of the daily 

traffic. In fact, 13% (63) of docking stations are located within 200m of the closest subway 

station and almost 50% within 500m (238 stations). In addition, some stations are integrated 

into important transport hubs such as the connection of lines 1, 7 and 9 (e.g., the Tacubaya 

station). Both transport modes are not only physically integrated, but they are also accessible 

using the same payment mode. The city launched in 2019 the intermodal mobility card 

(Tarjeta de Movilidad Integrada) as a payment method for different transport modes 

including subway and bike-sharing. The card costs 0.25 USD and works as a debit card, i.e., 

users can recharge it using specific modules distributed along the public transport network 

 
3 Being walking the first option in both cases: 65.1% and 37.3% respectively. 
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(since 2022, it is possible to recharge it using a mobile application). Concerning bike-

sharing, such a card allows users to unlock bicycles from stations.  

 

3.1  Fire in subway’s headquarters  

 

On January 9, 2021, a fire caused by a short circuit struck Mexico City’s subway 

headquarters shutting down operations in 6 out of 12 lines affecting 55% of the daily traffic 

(see Figure 2). Lines 4, 5, and 6 reopened operations only three days after the incident. 

However, lines 1, 3, and 2 were restored two (Jan 25th), three (Feb 1st), and four weeks (Feb 

8th) later. As a result, the network remained disrupted for four consecutive weeks. 

 Mexico City’s subway network disruption is suitable to be exploited as a natural 

experiment for the following reasons. First, it was an extemporaneous and unforeseeable 

event preventing operators and users from systematically modifying their behavior 

beforehand. Second, ECOBICI is integrated into the disrupted lines, notably lines 1, 2, and 

3. Furthermore, those lines are in fact the most demanded in the network accounting for 

almost 45% of daily traffic. Third, the network shut down partially, this in turn enables the 

possibility to study disruption effects on complementary bike journeys. Fourth, the network 

was disrupted for a sufficiently prolonged period (four consecutive weeks) to study the 

persistence of the effects over time and the formation of habits. 

 

4. Data and descriptive statistics 

 

To assess the disruption effects at hand, I created an original dataset combining diverse 

sources of information. First, I collected journey level data in an origin-destination format, 

which is publicly available from ECOBICI’s website. The dataset includes, among other 

variables, docking stations’ identifiers for the origin and destination, starting, and ending 

time, the type of station (e-bikes vs standard), zip code, and rider’s age and gender. Second, 

I requested the geolocation of docking stations from the operator’s API. Third, the total 

capacity, i.e., the total number of docks per station, was retrieved from ECOBICI’s web 

application. Fourth, regarding subway data, I collected stations’ geolocation as well as daily 

ridership at station level from the city’s open data portal. Finally, this study also includes 

geo-data for biking infrastructure in the city, obtained again from the open data portal. 
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The period of study comprises the events between October 2020 and April 2021, i.e., 

before, during, and after the subway disruption.4 It is worth mentioning that winter holidays 

in Mexico, during the period of study, started on December 21st, 2020, and ended on January 

8th, 2021. Notice that the day of the incident (January 9th, 2021) was the first Saturday after 

holidays. Therefore, I have dropped all the journeys during holidays. Consequently, the 

before-disruption scenario includes eleven weeks before December 21st, 2020, the during-

disruption scenario starts on January 11th, 2021, and includes the next four weeks, and the 

after-disruption scenario considers the rest of the available weeks. This approach was taken 

to avoid confounding factors related to the end of school holidays. On the other hand, this 

strategy could threaten the empirical findings if riders use holidays to form habits, which I 

believe is implausible because people use bikes during holidays mainly for ludic purposes. 

Nevertheless, I provided a robustness test to account for this caveat in section 7. Please 

referred to Figure 3 to see other holidays and days off in the time spam also dropped from 

the sample.  

I winsorized the data using the distribution of journeys duration, inferred from the time 

at origin and destination, dropping the shortest and longest trips (0.5% of each extreme). 

This is because journeys lasting just a few seconds or more than two hours are not credible 

and might be considered as measurement errors. Furthermore, after analyzing travel patterns 

within any typical day, I dropped weekends and holidays. As noticed in Figure 4 and Figure 

5, the intraday distribution of the number of trips is considerably different between working 

and nonworking days. As noticed, the travel pattern in a typical working day is characterized 

by two peak hours that coincides with entry to work (or school) and back-home time 

(≈9:00am and ≈19:00pm) and a third peak that coincides with lunch time in Mexico 

(≈15:00pm). In contrast, the volume of bike journeys during nonworking days is single peak 

around lunch time. 

 

 

 

 
4 As expected, Covid-19 had an important effect on the transport system in the city. The second quarter of 

2020 reported a bike-sharing ridership close to 20% of the total ridership in the same quarter of 2019, the 

lowest value observed during the crisis (see Figure A-2 for details). A similar behavior was observed in public 

transit ridership. The Figure by 2021 showed the first signs of recovery. By the second quarter of the year, 

bike-sharing and subway ridership were close to 45% of the levels observed in 2019-Q2. What is more, both 

systems have shown similar patterns.  
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Figure 3. Daily average of bike journeys over time 

 
Note: The Figure reports the daily average of bike-sharing journeys each week since October 1st, 2020. Solid vertical line 

(in blue) shows the first week after the subway disruption on January 9th, 2021. Dashed lines show the progress restoring 

the network. Dark shaded regions show school vacations in Mexico due Christmas and the Holy Week. Light shaded 

regions indicate weeks with at least one day off. 

 

Figure 4. Characteristic travel pattern of a 

working day 

Figure 5. Characteristic travel pattern 

during holidays and weekends 

  
Note: The Figure reports the travel patterns of December 

8th, 2020. This date was chosen to represent travel 

behavior during working days. It shows the density in the 

number of journeys by hour. 

Note: The Figure reports the travel patterns of December 

21st, 2020. This date was chosen to represent travel 

behavior during nonworking days. It shows the density in 

the number of journeys by hour. 
 

Afterwards, I constructed two balanced panel data at the level of docking stations 

observed every week. The main difference between each other is the subject of study. The 

origin-station database uses characteristics of the docking station at the origin while the 



 

Page 13 sur 51 

 

 

destination-station data exploits characteristics of the docking station used to complete the 

journey. Making this difference is relevant to dig deeper into the market dynamics between 

bike sharing and public transport. In a nutshell, bike sharing complements public transport 

connecting people to the service while substitution arises when bike is used to complete a 

similar subway itinerary.  

The definitive samples are similar in many characteristics by construction such as the 

number of observations, contains close to 1.2 thousand observations for 480 stations and 25 

weeks (11 before, 4 during, and 9 after disruption). The main outcome of interest is the 

number of bike journeys by docking station scaled by the number of working days in the 

week. During the period of study, on average 24.5 daily journeys were produced by docking 

station. In other words, almost 58,800 bike journeys were completed every week in the city. 

The evolution of bike journeys over time is shown in Figure 6 (a), dots represent the 

daily average of bike journeys and shaded region represents the weeks during which the 

system remained disrupted. As noticed, the number of bike journeys during public transport 

disruption showed a clear change in the tendency increasing week after week. Moreover, 

the curve keeps its positive tendency even in weeks after the disruption. In addition to this 

Figure, a map with the daily average of the number of bike journeys by docking station is 

provided in Figure 7. As expected, there is heterogeneity in the intensity of use across 

stations represented in the Figure by the size of the circles. What is more, it is common to 

observe larger circles close to subway stations which is indicative of the importance of the 

level of spatial integration between both modes. As mentioned above, this stylized fact goes 

in line with previous studies (Ma et al., 2015; Ma et al., 2018; Ashraf et al., 2021). 
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Figure 6. Evolution in the number of bike journeys by type 

(a) Total bike-sharing journeys (b) Substitute 

  
(c) First-mile (d) Last-mile 

  
(e) Complement 

 
Note: The Figure reports the weekly average number of bike journeys in total and by type (in dots). The shaded region 

represents the weeks of subway disruption. Figure (a) pooled all the bike journeys together. Figure (b) is exclusive for 

substitute journeys defined as trips that start and end within the spatial coverage (300m) of the subway network. Figures 

(c) and (d) include first and last-mile journeys defined as trips that start/end beyond/within the spatial coverage (300m) 

of the subway and ends/starts within/beyond. Figure (e) refers to as complementary journeys, i.e., bike trips that does 

not start nor end within the spatial coverage of the subway system. 
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This paper sheds light on the dichotomic market dynamics between bike-sharing and 

public transport. To this purpose, I classified journeys making use of the geo-location 

information of the origin and destination docking station in the following way: 

• Substitute. Bike journeys substituting subway trips are those that start and end within 

the spatial coverage of the subway. In other words, these types of itineraries could 

have been completed using the network. 

• First/Last-mile trips. In this case, bike-sharing is complementing public transport by 

creating first/last-mile connections. Following the commuters dilemma stablished 

by Lesh (Innovative concepts in first-last mile connections to public transportation, 

2013), a first-mile connection is defined here as a bike journey that starts beyond 

subway’s spatial coverage and ends in a docking station near the subway. 

Consequently, a last-mile bike journey starts nearby subway stations and ends in 

uncovered areas. 

• Complement. Bike-sharing can also serve to expand transport coverage, which is the 

case when journeys do not start or end within the spatial coverage of the subway 

system. 

I used thresholds to define the subway’s spatial coverage. Following Fan & Zheng 

(Dockless bike sharing alleviates road congestion by complementing subway travel: 

Evidence from Beijing, 2020), stations located closer to 300m (in planar distance) were 

within the spatial coverage of the subway system. On the other hand, stations located beyond 

300m were considered as outside the range of public transport. The outcome of interest in 

these cases measures the daily average number of trips that falls in each one of the categories 

above. Figure 6 (b)-(e) reports the evolution of such outcomes during the period of study. 

Dots again represent the daily average, and the shaded region represents the weeks during 

which the system remained disrupted. As expected, the number of trips substituting public 

transport increased during disruption suggesting that riders used bike-sharing to bridge 

disrupted connections within the public transport network. In addition, first/last-mile 

journeys decreased significantly in the first week of the disruption showing a constant 

recovery thereafter. This behavior could be explained by the fact that riders shift to private 

cars avoiding intermodal journeys or prefer to stay home when public transport is disrupted 

(Zhu & Levinson, 2012). However, the descriptive evidence suggests that such behavior 

changed in the following weeks, which might indicate that commuters considered bike-
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sharing as a viable alternative. A similar, and unexpected, behavior is observed for 

complementary journeys. One potential explanation for this is that the number of bikes 

available to make this kind of trips decreases because riders were using the system to bridge 

subway’s disruption. Another intuition is that riders might have decided not to ride if they 

expected more congested and disturbed roads. Finally, it is relevant to point out that these 

Figures show evidence of an expansion of bike-sharing demand after the disruption, 

especially for complementary journeys of every kind. This in turn might indicate that public 

transport disruption had a long-lasting impact on modal shift to bike-sharing. 

 

Figure 7. Number of bike journeys by docking station 

 
Note: The Figure reports the geographical distribution in the daily average of 

bike journeys by docking station. The circle size represents the intensity of 

use of each docking station relative to the rest. Solid black lines and dots 

denote the location of subway lines and stations. 

 

 

Other relevant variables for the analysis are the following. On average, the planar 

distance separating bike and subway stations is about 590 meters. As mentioned, such 

distance is key to explaining the spatial integration between both transport modes. An 

additional time-invariant characteristic of each docking station is their total capacity (26 

docks on average). Including this variable is important especially when there are spatial 
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heterogeneities among stations, i.e., when docking stations closer to the subway are also 

bigger in terms of the number of docks. I also control the type of bicycle (electric vs 

standard). On average, only 5.8% of the stations in the city are electric. Moreover, cycling 

infrastructure has been found to be determinant of bike ridership. In this study, I followed a 

spatial approach estimating the planar distance to the closest cycleway (171 meters on 

average). Finally, it has been documented that the availability of bikes and/or of empty slots 

at destination might influence users’ decisions to uptake the service. Nonetheless, this 

condition might be attenuated in areas with a larger density of docking stations. For instance, 

in the case where there are not available slots at their destination, riders could find another 

station nearby. On the other hand, isolated (and congested) stations could increase travel 

time to a point of discouraging riders. Therefore, I have included the density measured as 

the number of docking stations within a radius of 300m (the average value is 2.9).  

 

5. Empirical strategy 

 

To examine changes in the demand for bike-sharing during disruptions relative to the level 

of integration with the network, I estimated the differences in the relationship between bike-

sharing journeys and the distance to the closer subway station before, during, and after the 

disruption in the following way: 

 

𝑦𝑖,𝑡 = 𝛾1𝑑𝑢𝑟𝑖𝑛𝑔𝑡 + 𝛾2𝑎𝑓𝑡𝑒𝑟𝑡 +  𝛽1(𝑑𝑖 × 𝑑𝑢𝑟𝑖𝑛𝑔𝑡) + 𝛽2(𝑑𝑖 × 𝑎𝑓𝑡𝑒𝑟𝑡) + 𝑥𝑖,𝑡
′ Γ + 𝜇𝑖,𝑡 (1) 

 

where subindexes 𝑖 and 𝑡 stand for docking station and weeks since disruption. The outcome 

𝑦𝑖,𝑡 measures the number of bike journey staring (in the origin-station dataset) or ending (in 

the destination-station dataset) in a logarithmic scale. The dummy variable 𝑑𝑢𝑟𝑖𝑛𝑔𝑡 denotes 

the disruption treatment and take the value of one every week the system remained 

disrupted, 𝑎𝑓𝑡𝑒𝑟𝑡 is an indicator equal to one to every week after disruption. The vector 𝑥𝑖,𝑡
′  

includes time and docking station fixed effects, square time trends of ridership per docking 

station as well as the covariates 𝑑𝑖. In addition, 𝑥𝑖,𝑡
′  includes a set of controls: an indicator 

for e-bikes stations, capacity, distance to the closest cycleway, and density of docking 

stations. Also, 𝜇𝑖,𝑡 is the error term. The covariate 𝑑𝑖 is a measure of the level of spatial 

integration between both transport modes. In the origin-station dataset, 𝑑𝑖 is the inverse of 
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the distance between the docking station at the origin and the closest subway station. In a 

complementary way, 𝑑𝑖 refers to as the inverse of the distance within stations using the 

docking station at destination in the destination-station dataset. This procedure represents a 

first attempt to differentiate the effect depending on the type of bike journey (first-last mile). 

 I estimated equation (1) using OLS applying cluster standard errors at docking station 

level. The estimates of 𝛽1 and 𝛽2 measure the disruption effects conditional on the spatial 

interaction between transport modes. Positive estimates are expected meaning that 

increasing the spatial integration between both transport modes is associated with larger 

bike-sharing rides during and after public transport disruption. 

  I detected the following menaces to the identification strategy. The first one relies on the 

city’s response to manage disruption. For instance, if the city systematically relocates 

bicycles to support public transport, then the estimates would confound disruption effect 

with the operator’ strategic behavior. To this regard, the corresponding authority published 

a daily report containing all the strategies the city implemented to manage the situation. Due 

to the size of disruption the city bridged the network by increasing the capacity and coverage 

of other modes of transport such as bus, bus rapid transit, and trolleybuses. What is more, 

no action was taken regarding the deployment and rebalancing of bicycles across stations. 

Second, the city offered a special six-month plan for 6 USD fee (instead of the annual plan 

at 27 USD) for new users subscribed between January 12th and January 31st. To isolate the 

potential influence of this subsidy I control for the weekly number of new subscriptions. 

Third, one could argue that the limited capacity of docking stations might undermine the 

true effect if riders cannot find a bike at the origin or an empty dock at destination. 

Unfortunately, the dataset does not observe the number of bikes and docks available in 

stations at the origin and destination of each journey. Therefore, the results might only 

reflect a lower bound of the true effect. Nevertheless, to control for this potential bias, I used 

the station’s total capacity (i.e., the number of docks) and the density of additional docking 

stations within a radius of 300m. Finally, the underlying heterogeneity caused by variations 

in the weather was captured including time fixed effects. 

 In addition to the previous approach, I dig deeper into the effects depending on the market 

dynamics between both transport modes. As mentioned above, I classified each journey as 

substitute, complement, first-mile or last-mile depending on the spatial relationship of 

docking stations at origin or destination and the public transport network. Furthermore, 
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thresholds on the distance between both stations were used to define the spatial interaction. 

Consequently, to measure changes in the complementarity and substitutability to bike-

sharing during and after disruption, I estimated equation (1) using as outcomes the logarithm 

of the daily number of each type of journey by docking station. In addition, I dropped the 

covariate 𝑑𝑖 because it is embodied in the definition of each outcome, and it does not provide 

any additional information for the estimation. The relevant coefficient in this case are the 

estimates of 𝛾1 and 𝛾2. They compare fluctuations in the number of bike-journeys by type 

during and after disruption with the scenario before the incident. 

 In addition to the estimates by period of event, I implement an analysis by week to study 

the time-varying effects. Instead of the 𝑑𝑢𝑟𝑖𝑛𝑔𝑡 and 𝑎𝑓𝑡𝑒𝑟𝑖 dummies used in equation (1), 

I include week dummies as follows: 

 

𝑦𝑖,𝑡 = ∑ 𝛽𝑞𝑑𝑖 × 𝑤𝑒𝑒𝑘𝑞

13

𝑞= −11
+ 𝑥𝑖,𝑡

′ 𝛤 + 𝜖𝑖,𝑡 (2) 

 

Where 𝑞 identifies the number of weeks elapse relative to the subway disruption (𝑞 = 0). 

The vector 𝑥𝑖,𝑡
′  still includes docking station fixed effects, trends, the covariate 𝑑𝑖 as well as 

a set of controls. Again, when the outcome is computed as the number of trips by type of 

bike journey, the covariate 𝑑𝑖 is excluded. This strategy allows to visually inspect the 

estimates of 𝛽𝑞 as a function of time. I dummy out the indicator of one week before 

disruption to measure the effects with respect to this indicator. I used week 𝑞 = −2 for the 

purpose of exposition. Results are not sensible to the selection of this indicator. 

 

6. Results 

 

6.1  Effects on bike-sharing adoption 

 

Table 1 reports the estimates of equation (1) using the logarithm of the daily number of bike 

journeys as the outcome of interest. Columns (1)-(2) report disruption effects from the 

origin-station dataset that measures the inverse of the distance between the origin docking 

station and the closest subway station. Controls and fixed effects are included in both 
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columns, however, only column (2) considers the square time trend of the outcome. 

Columns (3)-(4) repeat the analysis using the destination-station dataset to consider the 

inverse of the distance between the docking station at the destination and the closest subway 

station. Due to the fact that the outcome variable is log-transformed, the exponential of the 

estimates measures the percentage change in the daily number bike journeys by docking 

station of increasing the spatial integration to public transport network.5 The marginal 

effects suggest that increasing the inverse of the distance between docking and subway 

stations by one unit increases by 3.5% the daily average of bike trips in both origin and 

destination stations during disruption. On the other hand, being closer to the public transport 

network is associated with a slight increase of 0.5%-1.0% in the number of bike journeys 

after disruption. Note that estimates are statistically different from zero almost everywhere. 

Moreover, the results are robust to the inclusion of the square trend time. 

 To ease the interpretation of the results in terms of the number bike journeys, I used the 

estimates from columns (2) and (4) from Table 1 to fit the daily number of journeys by 

docking station. Table 2 reports the averages from the predicted values and prediction 

intervals by period (before, during, and after disruption) for groups of docking stations 

depending on their distance to the subway for both datasets, origin (Panel A) and destination 

(Panel B). As a mode of comparison, six additional groups are shown: docking stations 

within 100, 200, and 500m as well as beyond 1, 1.2, and 1.5km from the subway spatial 

coverage. As noticed from the Table, disruption is associated with a decrease of two daily 

bike journeys by station on both panels which is equivalent to a percentage decrease of -

8.5%.  

  

 
5 By definition, the spatial integration decreases with the distance. Using the inverse of the distance between 

stations is a good measure of the spatial integration: the smaller the distance the larger its inverse reflecting a 

higher spatial integration. 
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Table 1. Public transport disruption effects on bike-sharing adoption 
 Dependent variable: 

 ln(Bike journeys) 
 Origin-station Destination-station 
 (1) (2) (3) (4) 

During*Distance 0.063 0.035*** 0.055*** 0.029*** 

 (0.006) (0.005) (0.009) (0.006) 

After*Distance 0.029 0.010*** 0.024*** 0.006** 

 (0.007) (0.002) (0.005) (0.002) 

During -0.040** -0.007 -0.040** -0.001 

 (0.018) (0.014) (0.017) (0.013) 

After 0.102*** -0.126*** 0.091*** -0.122*** 

 (0.023) (0.021) (0.023) (0.021) 

Distance -2.822*** 0.377*** -2.303*** 0.248*** 

 (0.020) (0.050) (0.020) (0.039) 

Capacity -0.059*** 0.002** -0.066*** 0.001 

 (0.0004) (0.001) (0.0004) (0.001) 

E-station -2.987*** 0.152*** -3.150*** 0.053 

 (0.004) (0.051) (0.004) (0.050) 

Distance to cycleway -0.005*** 0.0003*** -0.005*** 0.0002** 

 (0.00001) (0.0001) (0.00001) (0.0001) 

Density -0.961*** 0.023 -0.987*** 0.009 

 (0.003) (0.016) (0.003) (0.016) 

Subscriptions 0.003*** 0.006*** 0.003*** 0.006*** 

 (0.001) (0.001) (0.001) (0.001) 

Constant 8.093*** -0.826*** 8.317*** -0.634*** 

 (0.038) (0.149) (0.037) (0.140) 

Stations FE Yes Yes Yes Yes 

Week FE Yes Yes Yes Yes 

Stations' trend No Yes No Yes 

Observations 11,749 11,749 11,750 11,750 

R2 0.910 0.932 0.928 0.951 

Adjusted R2 0.906 0.929 0.925 0.949 

Note: The Table reports the estimated impact of public transport disruption on bike-sharing adoption. Rows 

2 and 4 show the estimates of β1 and β2 from equation (1), respectively. Columns (1) and (2) restrict the 

analysis to the origin-station dataset. Columns (2) and (3) restrict the analysis to the destination-station 

dataset. Distance refers to the inverse of the planar distance between subway and docking stations. Controls 

include e-bikes stations, station total capacity, distance to the closest cycleway, the number of docking 

stations in a radius of 300m (Density), and the number of new subscriptions. Stations’ trend control for the 

quadratic approximation of outcome’s trend. Cluster standard errors per docking station were applied. 

Significance levels are represented as follows: *p<0.1; **p<0.05; ***p<0.01.  
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Table 2. Daily bike journeys associated with public transport disruption by docking station 

Group Before During After 
Differences 

During-Before After-Before 

 (1) (2) (3) (4) (5) 

Panel A: Docking stations at origin 

Pooled 
23.6  

(16.2, 34.5) 

21.7  

(14.9, 31.6) 

26  

(17.9, 38) 
-1.9 2.4 

By distance      

< 100m 
32.8  

(22.5, 47.9) 

33.5  

(22.9, 49) 

37.2  

(25.5, 54.3) 
0.7 4.4 

< 200m 
32.1  

(22, 46.8) 

30.4  

(20.8, 44.3) 

34.4  

(23.6, 50.1) 
-1.7 2.3 

< 500m 
25.6  

(17.6, 37.3) 

23.8  

(16.3, 34.6) 

28.0  

(19.2, 40.8) 
-1.8 2.4 

> 1km 
16.3  

(11.2, 23.8) 

14.8  

(10.1, 21.5) 

18.5  

(12.7, 26.9) 
-1.5 2.2 

> 1.2km 
13.6  

(9.3, 19.8) 

12.4  

(8.5, 18.1) 

15.6  

(10.7, 22.7) 
-1.2 2.0 

> 1.5km 
12.0  

(8.3, 17.5) 

10.9  

(7.5, 15.9) 

13.8  

(9.4, 20) 
-1.1 1.8 

Panel B: Docking station at destination 

Pooled 
23.6  

(16.9, 33.2) 

21.8  

(15.5, 30.5) 

26.1  

(18.6, 36.6) 
-1.8 2.5 

By distance      

< 100m 
33.6  

(24, 47.2) 

34.7  

(24.7, 48.8) 

39.0  

(27.8, 54.7) 
1.1 5.4 

< 200m 
32.4  

(23.1, 45.5) 

30.9  

(22, 43.4) 

35.3  

(25.2, 49.5) 
-1.5 2.9 

< 500m 
25.9 

 (18.5, 36.3) 

24.1  

(17.2, 33.8) 

28.5  

(20.3, 40) 
-1.8 2.6 

> 1km 
15.2  

(10.8, 21.3) 

13.7  

(9.7, 19.2) 

16.8  

(12, 23.5) 
-1.5 1.6 

> 1.2km 
12.2  

(8.7, 17) 

11  

(7.9, 15.5) 

13.4  

(9.5, 18.8) 
-1.2 1.2 

> 1.5km 
9.2  

(6.6, 13) 

8.2 

(5.9, 11.5) 

9.7  

(6.9, 13.5) 
-1.0 0.5 

Note: The Table reports the daily average number of trips by docking stations before, during, and after public transport 

disruption (columns) conditional on the distance to the closest subway station (rows). It also reports the difference between 

the scenario during and before as well as the scenario after and before disruption. The values are computed from the fitted 

approximations of estimating equation (1). In other words, the values reported here are averages from the predicted values 

using the results shown in Table 1. The predicted interval at 95% confidence level is reported in parenthesis. Panel A refers 

to the estimates using the origin-station dataset only. Panel B refers to the estimates using the destination-station dataset 

only. Pooled includes all docking stations. 
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 The result is not striking, as a matter of fact, the literature on commuters’ behavior during 

disruption have largely documented that a fraction of citizens responds by staying home or 

shifting towards private cars (Zhu & Levinson, 2012; Zhang et al., 2021), which might 

explain the reduction in the total number of journeys. However, in line with the marginal 

effect, the reduction is heterogenous across groups decreasing in magnitude for those 

stations close to the subway. Docking stations at the origin located within 100m have a 

percentage increase of 2% in contrast to a decrease of -10% for docking stations located 

beyond 1.2km. Similarly, for stations at destinations within the same range, the number of 

journeys increased by 3.3% while a decrease of -9.8% is found for distances beyond 1.2km.  

 The panorama after disruption is also revealing. The number of journeys in both cases 

increased by 10.5% in comparison with the scenario before disruption. This amount is 

equivalent to 1.2 thousand journeys every day (almost 17.6% of the total fleet-size). 

Furthermore, stations in the close vicinity of the subway (<100m) produced between 18.7 

and 22.2 more daily journeys than those beyond 1km. Moreover, these stations showed an 

increase in the number of journeys of about 13%-16% with respect to the scenario before 

disruption. A final word on the level of significance. I have tested the null hypothesis of 

both 𝑎𝑓𝑡𝑒𝑟𝑡 and 𝑑𝑖 × 𝑎𝑓𝑡𝑒𝑟𝑡 jointly equal to zero, which is important for the validity and 

interpretation of the results. The null hypothesis was rejected with a p-value lower than 

0.001 in both cases suggesting that the number of bike journeys after the disruption was 

larger than the scenario before disruption overall. 

 To show evidence of the evolution of the effects over time, Figure 8 displays the time 

dummies estimates (𝛽𝑞) from equation (2). Zero in the x-axis represents the first week of 

disruption, the rest means the number of weeks elapsed since the incident. Solid red vertical 

lines indicate the week the disruption started and the week the system was fully restored. 

The gray region characterizes an interval confidence at 95% level around estimates. A dotted 

line was included instead of the dummy intentionally left out. Each one of the two sub-

figures (a) and (b) presents respectively docking stations at origin and destination. It is 

important to remember at this point that positive estimates represent an increase in the 

number of bike journeys when the spatial integration between both transport systems also 

increases. 
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Figure 8. Persistence of the effects over time by type of docking station 

(a) Origin docking stations (b) Destination docking stations 

  
Note: The Figure reports the weekly dummy (𝛽𝑞) estimates from equation (2). X-axis represents the number of weeks 

elapsed since the fire on January 9th, 2021. Therefore, the first week of disruption is zero. Solid vertical lines indicate 

the week when disruption started and the week when the system was fully restored. Shaded regions denote an interval 

confidence at 95% level around estimates. The dotted line was included instead of the dummy intentionally left out 

from the regression. Figure (a) shows the effects from the origin-station dataset only. Figure (b) shows the effects from 

the destination-station dataset only. 
 

 The results are in line with what I described in the previous section, but the evolution 

week by week reveals additional information. For instance, note the spike in the magnitude 

of the coefficients during disruption suggesting an increase in bike-sharing demand in that 

period. In contrast, the pattern shows a decline in magnitude once the network is fully 

restored. What is more, the visual inspection suggests a change in the negative tendency 

shown in the weeks before disruption, especially for docking stations at destination. As 

noticed, these estimates represent changes in the daily number of bike journeys by docking 

stations conditional on their spatial integration to the network, which difficult the 

interpretation in terms of the total number of bike journeys. Therefore, to ease the 

interpretation, I compute the evolution in the daily average of bike journeys by docking 

station using the predicted values and intervals from equation (2). Figure 9 (a) and (b) report 

the results. The dotted blue line shows the average daily number of bike journeys before 

disruption. As noticed, the network disruption generated an abrupt decrease in bike-sharing 

demand (see Table 2 for details). Nevertheless, the negative tendency is immediately 

reverted and maintained throughout the rest of the weeks. The evidence suggests an 

expansion of bike-sharing demand associated with the disruption in the transport network. 
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Figure 9. Predicted number of trips over time by type of docking station 

(a) Origin docking stations (b) Destination docking stations 

  
Note: The Figure reports evolution in the daily average of bike journeys by docking station using the predicted values and 

intervals from equation (2). The dotted line (in light blue) shows the average before disruption. X-axis represents the 

number of weeks elapsed since the fire on January 9th, 2021. Therefore, the first week of disruption is zero. Solid vertical 

lines indicate the week when disruption started and the week when the system was fully restored. Shaded regions denote 

an interval confidence at 95% level around the estimates. Figure (a) shows the estimates from the origin-station dataset 

only. Figure (b) shows the estimates from the destination-station dataset only.  

 

6.2  Dichotomous effects 

 

What I find in the previous section suggests that public transport disruption is associated 

with an increase in bike-sharing adoption, especially from docking stations near the subway 

system. However, it is not clear whether those journeys were used to substitute or to 

complement public transport. Table 3 reports the estimates of equation (1) for the outcomes 

that identify the number of bike journeys in each category: substitutes, complements, first-

mile, and last-mile. It is important to point out that I exclude the covariate 𝑑𝑖 in this case 

because it is used to classify each bike journey. It is noteworthy that some stations might 

not originate (or receive) specific types. For instance, no station beyond 300m can originate 

a substitute journey nor receive a first-mile journey by construction. Therefore, the number 

of observations is restricted accordingly. Docking stations, time fixed effects, and controls 

are included in every column. Panel A and B differ on the inclusion of square time trends in 

the number of total journeys by docking station. Moreover, columns (1) to (4) report the 

results for docking stations at origin while columns (5) to (8) use stations at destination. 
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Table 3. Disruption effects by type of journey 

 Dependent variable: 

 Origin-station Destination-station 

 Substitutes Complements First-mile Last-mile Substitutes Complements First-mile Last-mile 
 (1) (2) (3) (4) (5) (6) (7) (8) 

Panel A: No time trend included 

During 0.051 -0.094** -0.065 -0.037 0.093 -0.097** -0.062 -0.085 
 (0.079) (0.038) (0.050) (0.053) (0.066) (0.040) (0.051) (0.054) 

After 0.263*** 0.261*** 0.272*** 0.161*** 0.197*** 0.265*** 0.183*** 0.227*** 
 (0.069) (0.037) (0.045) (0.045) (0.068) (0.033) (0.046) (0.046) 

Panel B: Controlling for time trend 

During 0.004 -0.119*** -0.091* -0.079 0.050 -0.117*** -0.095* -0.105* 

 (0.075) (0.036) (0.051) (0.049) (0.067) (0.039) (0.050) (0.054) 

After 0.141** 0.158*** 0.170*** 0.050 0.083 0.182*** 0.097** 0.147*** 

 (0.067) (0.034) (0.042) (0.041) (0.064) (0.029) (0.042) (0.044) 

Controls Yes Yes Yes Yes Yes Yes Yes Yes 

Station FE Yes Yes Yes Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 2,894 8,854 8,846 2,894 2,894 8,852 2,894 8,831 

Note: The Table reports the estimated impacts of public transport disruption on bike-sharing adoption by each type of 

bike journey. Rows 1 and 2 show the estimates of γ1 and γ2 from equation (1) respectively. Columns (1) and (5) show 

the effects for substitute journeys defined as trips that start and end within the spatial coverage (300m) of the subway 

network. Columns (2) and (6) include complementary journeys, i.e., bike trips that do not start nor end within the spatial 

coverage of the subway system. Columns (3-4) and (7-8) include first and last-mile journeys defined as trips that start/end 

beyond/within the spatial coverage (300m) of the subway and ends/starts within/beyond. Columns (1) to (4) restrict the 

analysis to the origin-station dataset. Columns (5) and (8) restrict the analysis to the destination-station dataset. Controls 

include docking stations for e-bikes, station total capacity, distance to the closest cycleway, the number of docking 

stations in a radius of 300m (Density), and the number of new subscriptions into the program. Time trend in Panel B 

controls for the quadratic approximation of outcome’s trend. Cluster standard errors per docking station were applied. 

Significance levels are represented as follows: *p<0.1; **p<0.05; ***p<0.01. 

 

 Different conclusions can be extracted from the Table. First, regarding substitution, the 

estimates are positive (columns (1) and (5)) suggesting that the degree of substitution to 

bike-sharing increased during disruption. Nevertheless, the estimates are not statistically 

different from zero because the expansion in the degree of substitution contributes to restore 

the before-disruption levels on average. On the other hand, after disruption, the degree of 

substitution is again positive and statistically significant suggesting a long-lasting effect. 

Furthermore, the direction of the effect is robust to the inclusion of square time trends. 

Second, disruption affected the degree of complementarity in the opposite direction during 

the event. Note that the marginal effects are negative for the three types of complementary 

trips (complement, first-mile, and last-mile), however the level of significance varies across 

specifications. What is more, the inclusion of the square time trend does not alter the results. 
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As expected, disruption in the network limits intermodal trips, decreasing the number of 

first and last-mile journeys. On the contrary, the results suggest expansion in complementary 

after a full restoration of the network. In this case, the estimates are positive and significant 

in almost every estimation. Finally, the estimates do not show a considerable variation 

between the origin-station and destination-station datasets. 

 

Table 4. Daily bike journeys as substitutes or complements to public transport 

Group Before During After 
Differences 

During-Before After-Before 

Panel A: Docking station at origin 

Substitutes 
8.5 

(4.9, 14.5) 

9.0 

(5.3, 15.4) 

9.9 

(5.8, 16.9) 
0.5 1.4 

Complement 
16.1 

(10.5, 24.7) 

14.6 

(9.5, 22.4) 

17.7 

(11.5, 27.1) 
-1.5 1.6 

First-mile 
6.1 

(3.4, 11.1) 

5.6 

(3.1, 10.2) 

6.9 

(3.8, 12.5) 
-0.5 0.8 

Last-mile 
18.6 

(12.6, 27.5) 

16.8 

(11.4, 24.9) 

20.5 

(13.8, 30.3) 
-1.8 1.9 

Panel B: Docking station at destination 

Substitutes 
8.4 

(5, 14.3) 

9.1 

(5.4, 15.4) 

9.9 

(5.8, 16.7) 
0.7 1.5 

Complement 
16.1 

(10.6, 24.5) 

14.6 

(9.6, 22.2) 

17.7 

(11.6, 26.8) 
-1.5 1.6 

First-mile 
18.9 

(12.9, 27.8) 

17.5 

(11.9, 25.8) 

21.3 

(14.5, 31.2) 
-1.4 2.4 

Last-mile 
6.0 

(3.2, 11.4) 

5.5 

(2.9, 10.3) 

6.6 

(3.5, 12.4) 
-0.5 0.6 

Note: The Table reports the daily average number of trips by docking stations before, during, and after public transport 

disruption (columns) for different types of journeys (rows). It also reports the difference between the scenario during and 

before as well as the scenario after and before disruption. The values are computed from the fitted approximations of 

estimating equation (1). In other words, the values reported here are averages from the predicted values using the results 

shown in Table 3. The predicted interval at 95% confidence level is reported in parenthesis. Panel A refers to the estimates 

using the origin-station dataset only. Panel B refers to the estimates using the destination-station dataset only. Pooled 

includes all docking stations. Substitute journeys are defined as trips that start and end within the spatial coverage (300m) 

of the subway network. First and last-mile journeys are defined as trips that start/end beyond/within the spatial coverage 

(300m) of the subway and ends/starts within/beyond. Complementary journeys are bike trips that do not start nor end within 

the spatial coverage of the subway system. 

  

 Again, to interpret the results in terms of the number of journeys, the averages by groups 

using the predicted values from Panel B of Table 3 are shown in Table 4. The number of 

daily journeys by docking station that substitutes public transport itineraries increased 

during disruption between 5%-8%. Moreover, the number of all three types of 
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complementary journeys fall during disruption. For instance, the daily number of last-mile 

and first-mile journeys in docking stations at origin and destination decreased both by -

9.5%. On the other hand, the results suggest a generalized expansion in the service after full 

restoration of the network. Note that substitute trips increased by 16%-18% in docking 

stations at the origin and destination, respectively. The expansion is similar for all 

complementary journeys. Overall, these findings show evidence of public transport 

substitution to bike-sharing during disruption. In other words, bike-sharing helped 

commuters to find alternative itineraries to public transport. After disruption, both 

substitutions and complementary journeys increased probably because of habit formation 

and modal-shift. 

 I show visual evidence of the evolution of the effects over time in  

Figure 10 and Figure 11. Figures display the time dummies estimates (𝛽𝑞) from equation 

(2) for both, docking station at origin and destination, respectively. As above, the covariate 

measuring the distance to the closest metro station was not considered. Again, the x-axis 

represents the number of weeks elapsed since the incident. Solid red vertical lines indicate 

network disruption. The dummy-out is represented using a dotted line. Each one of the four 

panels (a) to (d), in both Figures, reports respectively the effects for Substitutes, 

Complements, First-mile, and Last-mile journeys. In contrast with the previous section, this 

time 100 ∗ (𝑒𝛽̂ − 1) represent the percentage change in the number of trips. Therefore, a 

positive coefficient is interpreted as an increase in bike-sharing demand. 

 The results are in line with the previous findings. However, the evolution week by week 

reveals additional information. In the case of Substitutes journeys, the evidence suggests a 

steep increase in the number of this kind of journeys since the first week of disruptions in 

the network. Furthermore, the positive tendency remained in the whole disruption period. 

Afterwards, once the system was fully restored, the degree of substitution decreased 

gradually until achieving levels like those before disruption. On the other hand, 

complementary journeys of every kind suffered a massive decrease just after disruption but 

recovered quickly in the coming weeks. What is more, the Figures show that such tendency 

was maintained for a couple of weeks after the system reopened operations in all the subway 

lines. Nonetheless, the Figures show an attenuation of the effects at the end of the period of 

study. The behavior is more accentuated in the case of first and last-mile journeys. The 

results are similar in both, docking stations at origin and destination. 
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Figure 10. Time-varying effects by type of journey, docking stations at origin 

(a) Substitute (b) Complement 

  
(c) First-mile (d) Last-mile 

  
Note: The Figure reports the weekly dummy (𝛽𝑞) estimates from equation (2) from the origin-station dataset only. X-

axis represents the number of weeks elapsed since the fire on January 9th, 2021. Therefore, the first week of disruption 

is zero. Solid vertical lines indicate the week when disruption started and the week when the system was fully restored. 

Shaded regions denote an interval confidence at 95% level around the estimates. The dotted line was included instead 

of the dummy intentionally left out from the regression. Figure (a) shows the effects for substitute journeys defined as 

trips that start and end within the spatial coverage (300m) of the subway network. Figures (b) and (c) include first and 

last-mile journeys defined as trips that start/end beyond/within the spatial coverage (300m) of the subway and 

ends/starts within/beyond. Figure (d) refers to as complementary journeys, i.e., bike trips that does not start nor end 

within the spatial coverage of the subway system. 

 

 Overall, the findings presented here suggest that public transport disruption had a 

persistent effect on the degree of substitution and complementarity to bike-sharing. 

Although, the effect vanished after a couple of months. However, as I show in the previous 

section, the attenuation of the effects has not been translated into a contraction of bike-

sharing ridership. This in turn opens the question of whether the impact is a consequence of 

modal shift which might be possible due to the duration of the disruption.  
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Figure 11. Time-varying effects by type of journey, docking stations at destination 

(a) Substitutes (b) Complements 

  
(c) First-mile (d) Last-mile 

  
Note: The Figure reports the weekly dummy (𝛽𝑞) estimates from equation (2) from the destination-station dataset only. 

X-axis represents the number of weeks elapsed since the fire on January 9th, 2021. Therefore, the first week of disruption 

is zero. Solid vertical lines indicate the week when disruption started and the week when the system was fully restored. 

Shaded regions denote an interval confidence at 95% level around the estimates. The dotted line was included instead 

of the dummy intentionally left out from the regression. Figure (a) shows the effects for substitute journeys defined as 

trips that start and end within the spatial coverage (300m) of the subway network. Figures (b) and (c) include first and 

last-mile journeys defined as trips that start/end beyond/within the spatial coverage (300m) of the subway and 

ends/starts within/beyond. Figure (d) refers to as complementary journeys, i.e., bike trips that does not start nor end 

within the spatial coverage of the subway system. 

  

 

6.3  Effects on bike journeys duration 

 

A follow-up question is whether the increase in the degree of substitution was accompanied 

by an increase in the intensity of use of bikes during and after disruption. In this work, I 

focus on measuring the effects on the duration of journeys. It is not possible to observe in 

the data the actual trajectory taken by users, however, it does indicate the undocking and 

docking time of each journey, which allows me to compute a proxy of the actual travel time. 
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To measure the effects of disruption on journeys duration, I have followed a different 

approach exploiting journey level data to estimate the following relationship: 

 

𝑙𝑛(𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛)𝑖,𝑡 =  𝛽1𝑑𝑢𝑟𝑖𝑛𝑔𝑡 +  𝛽2𝑎𝑓𝑡𝑒𝑟𝑡 +  𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒𝑖,𝑡
′ Υ + 𝑥𝑖,𝑡

′ Γ + 𝜇𝑖,𝑡 (3) 

 

The vector 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒𝑖,𝑡
′  includes a dummy indicating the type of journey and the 

interaction terms with 𝑑𝑢𝑟𝑖𝑛𝑔𝑡 and 𝑎𝑓𝑡𝑒𝑟𝑡. On the other hand, the vector 𝑥𝑖,𝑡
′  includes a set 

of trip level controls (gender, age, and age2), stations-level controls (same as above), 

outcome square time trend, number of new subscriptions, and a set of time fixed effects 

(week of the year, month of the year, day of the week, hour of the day) to capture time-

varying conditions that affect duration such as whether, riding during peak vs off-peak 

hours, among others. 

 Estimates are shown in Table 5. Columns (1) to (3) exclude 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒𝑖,𝑡
′  and differ in 

whether fixed effects were included in the regression. Columns (4) to (6) add estimates for 

the covariates in 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒𝑖,𝑡
′ . As can be seen from the Table, the results suggest that 

duration of bike journeys increased during disruption, every estimate is positive and 

statistically different from zero. The magnitude of the estimated coefficients suggests that 

disruption is associated with an increase in the travel time in between 8.2%-13.1%. This in 

turn represents an increase of 2 minutes with respect to the average journey duration (15.7 

minutes). The effect after disruption is also positive and statistically significant, which might 

suggest that public transport disruption had a positive effect in the intensive margin of bike-

sharing ridership in the long-run. Nevertheless, the magnitude of the effect is lower and 

ranges between 3.0% and 9.5% (i.e., close to 1.5 minutes with respect to the average). 

 Regarding the heterogenous effect by type of journey, the estimates in columns (4) to (6) 

in Table 5 suggest changes in the intensive margin of bike ridership across journey types 

during disruption. In fact, the duration of bike journeys as substitutes to the subway 

increased 16.4% with respect to the average duration of complementary journeys in the same 

period. On the other hand, comparing substitution trips during and before disruption, the 

duration of the trips suffered a percentage increase of 14.1% in contrast with the 12.1% 

comparing the scenarios before-after. A similar pattern is found for complementary trips 

which duration increased by 10.1% and 9.3%. Overall, these findings are in line with the 

usage of bike-sharing to bridge disruptions in the network. Riders are willing to do longer 
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trips to complete their journeys as a consequence of a lack of connection inside the network. 

Furthermore, as expected, no difference is found between substitutes and complementary 

journeys once the network is restored. 

 

Table 5. Disruption effects on the bike journeys duration 

 Dependent variable: 

 ln(Journey duration) 
 (1) (2) (3) (4) (5) (6) 

During 0.079*** 0.077*** 0.123*** 0.076*** 0.074*** 0.117*** 
 (0.002) (0.002) (0.023) (0.002) (0.002) (0.023) 

After 0.030*** 0.030*** 0.091*** 0.029*** 0.029*** 0.089*** 
 (0.001) (0.001) (0.015) (0.001) (0.001) (0.015) 

Substitutes    0.105*** 0.140*** 0.137*** 
    (0.003) (0.004) (0.004) 

Substitutes*During    0.017** 0.014** 0.015** 
    (0.007) (0.007) (0.007) 

Substitutes*After    0.011** 0.006 0.007 
    (0.005) (0.005) (0.005) 

Constant 2.732*** 2.647*** 5.278*** 2.727*** 2.608*** 5.154*** 
 (0.008) (0.008) (0.798) (0.008) (0.008) (0.797) 

Individual characteristics Yes Yes Yes Yes Yes Yes 

Station’s characteristics No Yes Yes No Yes Yes 

New subscriptions No No Yes No No Yes 

Week of the year FE No No Yes No No Yes 

Month of the year FE No No Yes No No Yes 

Day of the week FE No No Yes No No Yes 

Hour of the day FE No No Yes No No Yes 

Trend No No Yes No No Yes 

Observations 1,280,729 1,280,729 1,280,729 1,280,729 1,280,729 1,280,729 

R2 0.005 0.027 0.032 0.007 0.029 0.035 

Adjusted R2 0.005 0.027 0.032 0.007 0.029 0.035 

Note: The Table reports the estimated impacts of public transport disruption on the duration of the trip. Each 

row shows the estimates from equation (3). Substitutes is a dummy identifying substitute bike journeys defined 

as trips that start and end within the spatial coverage (300m) of the subway network. Columns differ in the 

inclusion of controls, fixed effects, and outcome quadratic time trend. Controls include user’s gender, age, age2, 

distance to the closest subway station, docking stations for e-bikes, station total capacity, distance to the closest 

cycleway, and the number of docking stations in a radius of 300m (Density). Robust standard errors were 

applied. Significance levels are represented as follows: *p<0.1; **p<0.05; ***p<0.01. 
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7. Heterogeneity and robustness 

 

7.1  Specification checks 

 

Placebo analysis. One concern to the empirical strategy is that estimates are driven by 

random variations in the demand for bike-sharing over time. To show that the results are 

robust to this caveat, I replicate the analysis using a placebo sample with a different date 

that simulates public transport disruption. To produce a parallel sample, I take January 11th, 

2020, as the first day of disruption (1 year before) and I count the same number of weeks 

before and during this placebo disruption scenario. Holidays and days off were again 

dropped according to the schooling calendar. This placebo sample has the advantages that 

January 11th, 2020, is the first day after school holidays which allows us to reassure that the 

effect is driven by public transport disruption and not by seasonality in the school calendar. 

In addition, the sample is ideal to avoid any potential issues related to the global pandemic. 

It is relevant to clarify that the number of weeks after disruption in this placebo sample are 

reduced to avoid the first Covid-19 related lockdown in the city. As noticed in Table A-1, 

the corresponding coefficients are statistically not different from zero. To provide a visual 

inspection of the effects in this placebo sample, I estimate time dummies from equation (2). 

The results are summarized in Figure A-1 (a) and (b), which uses respectively the origin-

station and destination-station samples. As expected, the Figures show a smooth behavior 

around both placebo time thresholds determining the during and after periods. Hence, the 

evidence presented here suggests that my findings are robust to the random variance of bike-

sharing ridership over time. 

 

Alternative threshold for the spatial integration. Even though some studies suggest that 

docking stations located within three hundred meters of the subway network might be 

considered spatially integrated with this transport mode, it is not clear whether this threshold 

reflects the specific case of Mexico City. Therefore, I reproduce the results for substitutes 

and complement journeys for a wide range of spatial thresholds. Details of these findings 

are discussed in Table A-2. The thresholds consider ranges from 200m to 1200m in a 

frequency of 200m, displayed in rows in the Table. Panels in the Table indicate the type of 

journey: substitutes (A), complements (B), first-mile (C), and last-mile (D). Notice that 
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estimates of substitutes journeys, especially during disruption, are sensible to the choice of 

the distance. In fact, for a threshold of 400m and beyond, the results suggest a percentage 

decrease in the number of this type of bike journey. Further research is needed to improve 

the identification of bike trips by substituting the public network. On the other hand, 

estimates after disruption are robust to the choice of different thresholds. Regarding 

complementary trips, all the results are in line with the estimates presented in Table 3 

regardless of the distance considered, the period of analysis (during or after), as well as the 

sample used (origin-station or destination-station). In other words, these results show that 

the number of complementary journeys decreased with the level of spatial integration during 

disruption but increased afterwards. Nonetheless, in terms of magnitude and significance, 

the effects are larger for short distances, especially in the case of first and last-mile journeys 

but vanish once larger distances are reached reassuring the intuition that those journeys 

serve as connections to public transport. 

 

7.2  Heterogeneity across docking stations 

 

In this section I explore heterogenous effects of public transport disruption for distinctive 

characteristics of docking stations. I replicate the main analysis for different subsamples as 

follows. Docking stations for e-bikes vs standard bikes. In the Mexican bike-sharing model 

e-bikes are only available in specific docking stations which, at the same time, cannot 

allocate standard bikes. This characteristic is identifiable in our sample. Docking station 

capacity, i.e., the total number of bikes that each docking station can support. I split the 

sample in two, low capacity between 10 to 23 bikes and high capacity between 24 and 36 

docks (10 and 36 are the minimum and maximum capacity in the city). Docking stations 

connected with dedicated bike lines. I split again the sample into two: stations within and 

beyond 300m to the closest cycleway. Density of additional stations in a radius of 300m. 

This time I considered four different configurations: stations that share the space with 

exactly one additional station, where there are more than one, three or nine stations nearby. 

   Table A-3 summarizes all the results. The influence of e-bikes is irrelevant in this case 

(the estimates are mostly not significant) due to the small number of observations in 

comparison with standard stations (only 5.8% of docking stations are e-bikes). Regarding 

the size of the stations, it is irrelevant to determine the total effect. The effect is slightly 
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larger in low-capacity stations contrary to the intuition. One could expect that riders prefer 

higher stations to decrease the uncertainty of finding available bikes at origin or empty docks 

at destination. However, it might be the case that users reduce such uncertainty by preferring 

denser regions in terms of number of stations. This strategic behavior might help them to 

reduce the expected travel time. In fact, this intuition is supported by empirical evidence. 

As noticed, having at least one additional docking station nearby is relevant for users. What 

is more, during disruption, the density matter for users at origin and destination. However, 

under normal conditions, the estimates suggest that users value more denser areas at their 

destination. Finally, the relationship with the proper infrastructure for cycling is also 

important for riders, the effects seem to arise from docking stations with cycleways nearby 

before and after disruption. These results are in line with recent studies regarding the 

relevance of cycling infrastructure (Ashraf et al., 2021). 

 

8. Influence on subway ridership 

 

This article presents evidence of a dichotomic relationship between bike-sharing and public 

transport in Mexico City. It also shows how a disruption of the subway system affects the 

dynamics between both transport modes. The main findings suggest an increase in the 

degree of substitution during disruption and even after, when the network was fully restored. 

On the other hand, complementary bike journeys to public transport decreased during 

disruption, but the scenario after disruption shows an important recovery exceeding the 

levels observed before the incident. Nonetheless, a relevant question is whether the 

expansion of bike-sharing due to disruptions in the network has generated a modal-shift 

displacing subway ridership. Providing evidence in this regard is crucial for policy purposes 

because bike-sharing might represent a viable alternative to reduce car dependency (to 

tackle transport-related concerns) in as much as it complements public transport systems. 

 According to Goodwin (1977), habits prevent commuters to revise their choice set every 

time they travel limiting their capacity to notice changes in the attractiveness of new modes 

of transport. In addition, Goodwin argues that disturbances in the environment force 

commuters to deliberate among new alternatives. Disruptions in public transport is a well-

documented case on how changes to the environment might alter commuters behavior (Zhu 

& Levinson, 2012; Tyndall, 2019; Yeung & Zhu, 2022). In the context of this article, 
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disruption in the subway introduced bike-sharing into the choice set of different commuters 

increasing the number and intensity of use of this mode. Furthermore, the evidence 

presented here shows long lasting effects suggesting that riders might have formed habits 

during the weeks of disruption putting bike-sharing as a viable option even under normal 

circumstances. This in turn might influence subway ridership by affecting the level of 

substitution between both modes.  

 Nevertheless, assessing modal-shift requires detailed information on commuters to be 

able to identify changes in their choice-sets and to observe their preferences among 

alternatives. This is important because modal shift does not necessarily come from public 

transport to bike-sharing. Affectations in the network disrupts other modes of transport by 

altering congestion on the streets and on other public transport services such as buses 

(Anderson, 2014). However, revealed preferences data from commuters is difficult to collect 

especially under the context of disruptions. In this paper instead, I proceed by studying the 

relationship between subway and bike-sharing ridership at three different levels of 

aggregation: at city, subway lines and subway stations level. This strategy helps me to 

identify to what extent bike-sharing adoption is associated with displacement in subway 

ridership. 

 To relate changes in subway ridership relative to the demand for bike-sharing as a 

consequence of the public system disruption, I estimate the following relationship: 

 

𝑙𝑛𝑦𝑖,𝑡 =  𝜃1(𝑙𝑛𝐵𝑟𝑖,𝑡 × 𝑑𝑢𝑟𝑖𝑛𝑔𝑡) + 𝜃2(𝑙𝑛𝐵𝑟𝑖,𝑡 × 𝑎𝑓𝑡𝑒𝑟𝑡) + 𝑥𝑖,𝑡
′ 𝛤 + 𝜇𝑖,𝑡 (4) 

 

where subindex 𝑡 represents days since disruption. Moreover, 𝑖 stands for subway lines or 

stations depending on the level of desegregation. For the purpose of the exposition, I will 

consider 𝑖 as the subway station in the description of the empirical strategy. The outcome 

𝑙𝑛𝑦𝑖,𝑡 is the logarithm of the number of daily travelers entering in the network in station 𝑖. 

The vector 𝑥𝑖,𝑡
′  includes time fixed effects, subway line and subway station fixed effects, 

district fixed effects, square time trends by station as well as the covariates 𝑑𝑢𝑟𝑖𝑛𝑔𝑡 and 

𝑎𝑓𝑡𝑒𝑟𝑡. This vector also includes a set of controls to the built environment such as the 

density of docking station nearby, an indicator for the type of subway station (transfer or 

intermediate station), distance to the closest cycleway, distance to district downtown, and 

distance to the city’s downtown. Also, 𝜇𝑖,𝑡 is the error term. The 𝑙𝑛𝐵𝑟𝑖,𝑡 is the logarithm of 
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the number of bike journeys overall or by type (substitutes, complements, first-mile, and 

last-mile). As in the previous strategy, I exploited the spatial characteristics of both transport 

modes to relate subway and bike-sharing ridership assigning docking stations to the closest 

subway line/station in terms of the planar distance between each other. Therefore, the bike-

sharing ridership associated to a specific subway line/station is generated from docking 

stations within the spatial vicinity. This strategy allows the classification of each bike 

journey by type.  

I estimated equation (4) using OLS at city level. On the line/station disaggregation, I 

estimate a Poisson regression model because we are interested in the logarithmic 

relationship of the outcome. However, a simple logarithmic transformation is not viable 

because the flux of passengers in stations closed during disruption is zero. Furthermore, 

when I analyze the effects at stations level, I apply the hyperbolic sine transformation to the 

number of bike journeys by type. This is because some docking stations do not produce 

specific types of journeys. Cluster standard errors at the subject level (subway lines or 

stations) are considered.  

Finally, the vectors of coefficients θ1 and θ2 measure the effects of increasing bike-

sharing demand on subway ridership before, during, and after disruption. For instance, a 

negative coefficient is evidence that bike-sharing and public transport are substitutes. In 

other words, a percentage increase of one percent in bike-sharing ridership should be 

associated with a percentage decrease of subway ridership by the corresponding estimated 

coefficient. Moreover, if the expansion of bike sharing demand is not associated with 

subway ridership displacement, then we would expect to find positive estimates (statistically 

equal to zero) in the after-disruption scenario.  

One important limitation in the analysis is that subway ridership is measured as the flux 

of commuters entering in each station which imposes important concerns to identify the 

relationship with last-mile journeys. A better approximation would be to use the flux of 

commuters leaving the station; however, I am restricted by the available information in the 

dataset. Nevertheless, a high correlation between the in/out flux by station is expected 

making the outcome a good approximation for the ideal measure. Another challenge is to 

separate the intensive and extensive margin regarding bike system. The expansion of bike-

sharing demand might come because of an increase in the number of users (extensive 

margin) or due to an increase in the frequency of use of riders already registered in the 
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system (intensive margin). Because I am only using information from working days, it is 

implausible that the effect comes from the intensive margin. Nonetheless, I estimated the 

effect of disruption to the number of new subscriptions adapting equation (3) to provide 

evidence about the expansion of bike-sharing in terms of the number of riders. 

 

8.1  Results 

 

This section’s main results are reported in Table 6 and Table 7. Overall, the findings suggest 

that disruption is associated with an increase in the degree of complementarity between both 

transport modes. Nevertheless, the direction and magnitude of the effect differs between the 

level of aggregation. Restricting the analysis to subway lines integrated with bike-sharing 

shows evidence of subway substitution to bike-sharing. In other words, increasing the bike-

sharing ridership is associated with lower subway ridership within those lines during and 

after disruption. Estimates suggest that increasing by 10% the number of bike-sharing 

journeys decreases by 3.3% and 0.4% subway ridership during and after disruption, 

respectively. However, more granular data shows the opposite results. When subway 

ridership is considered only in stations integrated with bike-sharing, both modes 

complement each other. According to the point estimates, increasing the number of bike-

sharing journeys by 10% increases subway ridership by 1.2% and 0.3% during and after 

disruption.  

Contradictory results in terms of the direction of the effect when more granular data is 

considered might be explained due to the spatial influence of bike-sharing system in the 

city. Due to physical restrictions, the influence of bike-sharing is limited to the location and 

distribution of docking stations. In contrast, the analysis at subway-line level considers users 

entering stations not integrated with bike-sharing. In some extreme cases, bike-sharing is 

integrated in a small fraction of entire lines. Therefore, expanding the demand for bike-

sharing should not influence the ridership in those stations especially when only inflow 

ridership is considered. Moreover, bike-sharing ridership might influence the outflow of 

passengers in outer regions. More granular data in terms of the number of passengers exiting 

each subway station is suitable to fully explain this result. 
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Table 6. Bike-sharing influence on subway ridership 

 Dependent variable: 

 ln(Subway ridership)  Subway ridership 

 OLS  Poisson 

 Aggregated  Subway lines  Subway stations 
 (1) (2)  (3) (4)  (5) (6) 

ln(Bike ridership) 
0.125* 

(0.067) 

0.124* 

(0.065) 

 0.247** 

(0.112) 

0.246** 

(0.112) 

 0.122*** 

(0.024) 

0.122*** 

(0.024) 

During 
-7.694*** 

(1.044) 

-7.650***  

(1.028) 

 1.491*** 

(0.289) 

1.485*** 

(0.289) 

 -1.350*** 

(0.126) 

-1.350***  

(0.126) 

After 
-2.537*** 

(0.954) 

-2.584***  

(0.943) 

 -0.295** 

(0.125) 

-0.301** 

(0.125) 

 -0.715*** 

(0.049) 

-0.716***  

(0.049) 

ln(Bike ridership)*During 
0.762*** 

(0.113) 

0.756*** 

(0.112) 

 -0.334*** 

(0.051) 

-0.334*** 

(0.051) 

 0.121*** 

(0.024) 

0.121***  

(0.024) 

ln(Bike ridership)*After 
0.228  

(0.102) 

0.232** 

(0.101) 

 -0.041*** 

(0.005) 

-0.041*** 

(0.005) 

 0.032*** 

(0.006) 

0.032***  

(0.006) 

Controls and FE Yes Yes  Yes Yes  Yes Yes 

Output trend No Yes  No Yes  No Yes 

Observations 121 121  968 968  6,403 6,403 

R2 0.986 0.986       

Adjusted R2 0.984 0.984       

Log Likelihood (Mio.)    -9.490 -9.488  -6.117 -6.116 

Akaike Inf. Crit. (Mio.)    18.980 18.975  12.233 12.233 

Residual Std. Error 0.028 0.028       

F Statistic 496.5***  465.8***       

Note: The Table reports the estimated impact of bike-sharing on subway ridership during and after disruption. Columns report 

estimates at city level (1-2), subway line level (3-4), and subway station level (5-6). Regressions at aggregated level include 

new subscriptions, day of the week, and month as controls and fixed effects. Line fixed effects and the density of docking 

station nearby are added when subway lines are considered. For the analysis at station level, the type of subway station 

(transfer or intermediate station), district, zip code, distance to city downtown, distance to district downtown, and distance to 

closest cycleway are also included. Trend refers to the outcome quadratic trend. Cluster standard errors at subway lines and 

station were applied in each case. Significance levels are represented as follows: *p<0.1; **p<0.05; ***p<0.01. 

 

The estimates by type of bike-journey provide a more detailed information about the 

dynamics between both transport modes (see Table 7). As expected, considering only 

subway stations integrated with bike-sharing, increasing the number of bike-journeys that 

substitute subway itineraries is negatively associated with subway ridership during. 

Increasing by 10% substitution journeys diminishes on average subway ridership in those 

stations by 0.6%. It is noteworthy that the effect is sustained at a lower extent even after 

disruption. In this case, the response is reduced to 0.1%. 
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Complementary journeys, i.e., those that happened outside the spatial coverage of the 

subway system, show equivalent results. What is more relevant from the analysis is that this 

behavior even is sustained after fully restoration of the network. The case of first-mile bike 

journeys supports the previous evidence. Again, the direction of the effect is as expected, 

however, a larger effect after disruption in comparison with the scenario before suggests a 

larger degree of complementarity as a result of disruptions in the network. Last-mile trips 

on the other hand show a negative and significant effect during and after disruption. The 

interpretation of these estimates is less evident. They suggest that improving connectivity 

for the last-mile, decreases the complementarity between both modes, harming multimodal 

behavior. Nevertheless, as I mentioned above, interpreting these coefficients should be done 

with caution because subway ridership does not measure the number of users exiting the 

network. To accurately measure last-mile complementarities, stations’ outflow is desired. 

Previous findings are evidence of how disruption in the subway system changed the 

market dynamics with bike-sharing. Nevertheless, limitations in the data prevent us to 

disentangle whether the expansion of bike-sharing and its influence on subway ridership is 

consequence of more users shifting to bike-sharing (extensive margin) or an increase in the 

intensity of use of this mode (intensive margin). As a first attempt to study such difference, 

Table 8 reports the effects of disruption on the daily number of new subscriptions. As 

noticed, the results suggest that disruption is associated with an expansion in the number of 

citizens registered to ECOBICI. Nevertheless, caution interpreting these results is advised. 

Even if bike-sharing membership increased, the data does not allow us to link it with the 

effective demand of those new members.  



Table 7. Bike-sharing influence on subway ridership by type of journey 

 Dependent variable: 

 
ln(Subway 

ridership) 
Subway ridership 

ln(Subway 

ridership) 
Subway ridership 

ln(Subway 

ridership) 
Subway ridership 

ln(Subway 

ridership) 
Subway ridership 

 OLS Poisson OLS Poisson OLS Poisson OLS Poisson 

 Aggregated Lines Stations Aggregated Lines Stations Aggregated Lines Stations Aggregated Lines Stations 
 (1) (2) (3)++ (4) (5) (6)++ (7) (8) (9)++ (10) (11) (12)++ 

ln(Substitutes)*During 
0.626*** 

(0.099) 

-1.061*** 

(0.153) 

-0.064*** 

(0.012) 
         

ln(Substitutes)*After 
0.139 

(0.064) 

-0.118*** 

(0.008) 

-0.016*** 

(0.004) 
         

ln(Complement)*During    0.753*** 

(0.120) 

-0.204*** 

(0.029) 

0.068*** 

(0.010) 
      

ln(Complement)*After    0.217** 

(0.097) 

-0.024*** 

(0.003) 

0.029*** 

(0.002) 
      

ln(First-mile)*During       0.732*** 

(0.124) 

-0.246*** 

(0.034) 

0.066*** 

(0.012) 
   

ln(First-mile)*After       0.225** 

(0.107) 

-0.033*** 

(0.004) 

0.031*** 

(0.003) 
   

ln(Last-mile)*During          0.762*** 

(0.145) 

-0.471*** 

(0.078) 

-0.030*** 

(0.011) 

ln(Last-mile)*After          0.238** 

(0.101) 

-0.070*** 

(0.009) 

-0.010*** 

(0.003) 

Observations 121 968 6,403 121 968 6,403 121 968 6,403 121 968 6,403 

R2 0.985   0.986   0.985   0.984   

Adjusted R2 0.983   0.983   0.983   0.982   

Log Likelihood (Mio.)  -7.511 -6.146  -9.508 -6.105  -9.432 -6.129  -9.595 -6.147 

Residual Std. Error 0.030   0.029   0.029   0.031   

F Statistic 424.8***   445.9***   437.8***   405.5***   

Note: The Table reports the estimated impact of bike-sharing on subway ridership during and after disruption by type of bike-sharing journey. Substitute journeys are defined as trips that 

start and end within the spatial coverage (300m) of the subway network. First and last-mile journeys are defined as trips that start/end beyond/within the spatial coverage (300m) of the subway 

and ends/starts within/beyond. Complementary journeys are bike trips that do not start nor end within the spatial coverage of the subway system. Bike journeys were transformed using the 

inverse hyperbolic sine function (instead of the natural logarithm) in columns marked as ++. Regressions at aggregated level include new subscriptions, day of the week, and month as controls 

and fixed effects. Line fixed effects and the density of docking station nearby are added when subway lines are considered. For the analysis at station level, the type of subway station (transfer 

or intermediate station), district, zip code, distance to city downtown, distance to district downtown, and distance to closest cycleway are also included. Every model includes the outcome 

quadratic trend. Cluster standard errors at subway line and station are considered in each case. Significance levels are represented as follows: *p<0.1; **p<0.05; ***p<0.01.



Table 8. Impact on the number of new users 

 Dependent variable: 

 ln(Daily No. of new subscriptions) 
 (1) (2) (3) 

During 0.488** 0.524** 0.686*** 
 (0.207) (0.210) (0.233) 

After 0.206 0.278 0.485 
 (0.375) (0.381) (0.401) 

Constant 3.456*** 5.003*** 5.743*** 
 (0.505) (1.532) (1.613) 

Month of the year FE Yes Yes Yes 

Week of the year FE Yes Yes Yes 

Day of the week FE Yes Yes Yes 

Trend No Yes Yes 

Lag No No Yes 

Observations 120 120 119 

R2 0.754 0.757 0.764 

Adjusted R2 0.651 0.652 0.656 

Residual Std. Error 
0.268  

(df = 84) 

0.268  

(df = 83) 

0.267  

(df = 81) 

F Statistic 
7.345***  

(df = 35; 84) 

7.185***  

(df = 36; 83) 

7.093***  

(df = 37; 81) 

Note: The Table reports the estimated impact of public transport disruption on the number 

of new subscriptions to the bike-sharing program. Each row shows the estimates from 

equation (1) excluding the covariate di. Trend refers to a quadratic approximation in the 

trend of daily new subscriptions and Lag refers to the first lagged value of the outcome. 

Robust standard errors were applied. Significance levels are represented as follows: 

*p<0.1; **p<0.05; ***p<0.01. 

 

9. Conclusion 

 

This article investigates the impact of public transport disruptions on the adoption of bike-

sharing. I exploit an extemporaneous event that shut down operations in 50% of the subway 

lines in Mexico City in a natural experimental setting to causally identify public transport 

substitution to bike-sharing. In addition, I provide empirical evidence on the spatial 

influence of subway networks to compare outcomes of docking stations with different 

degrees of spatial integration to public transport. Furthermore, using the spatial integration 

between both systems, I measure heterogenous effects by type of bike-sharing journeys 

including substitutes, complement, first, and last-mile connections. Finally, due to the 

amount of information available, I study the evolution of the effects over time. 
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 Overall, my findings suggest an increase in the degree of substitution to bike-sharing 

associated to public transport disruption, especially in docking stations highly integrated 

with the subway network. Complementarity decreased during this period including both first 

and last-mile journeys. This result was expected due to the lack of connectivity within the 

network. What is more, the empirical evidence suggests that disruptions were associated 

with an overall increase in the adoption of bike-sharing in the long-run. In fact, the number 

of bike journeys complementing and substituting public transport increased in the weeks 

after the restoration of the system. To ease the interpretation of these findings, I measure the 

influence of bike-sharing on subway ridership conditional on the network disruption. The 

estimates are positive during and after disruption when only subway stations integrated with 

the system are considered. These results suggest that disruptions in the network increased 

the degree of complementarity between both transport modes. Nevertheless, further research 

is needed to better understand whether the evidence found here is the consequence of modal 

shift from private cars. 

 The findings presented here might help policy makers to design multimodal mobility 

systems resilient to disruptions and compatible to face the current sustainable and 

environmental challenges. The dichotomic relationship between new mobility services and 

public transport is beneficial to face recent challenges such as disruptions and congestion 

while providing alternativities to reduce car-dependency. However, very few is known 

about this type of market, especially due to the recentness of such innovations and the 

limited availability of data. The introduction of these new modes challenged the traditional 

vertically integrated urban mobility and has given room to a more decentralized 

organization. This in turn raises new questions which answers will help societies to unlock 

the whole potential of an integrated multimodal mobility system. 
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Appendix A. Robustness test and additional results 

 

Figure A-1. Placebo analysis - Visual inspection 

(a) Origin docking stations (b) Destination docking stations 

  
Note: The Figure reports the weekly dummy (𝛽𝑞) estimates from equation (2) for the placebo sample. X-axis represents 

the number of weeks elapsed since the placebo date of disruption on January 11th, 2020. Therefore, the first week of 

disruption is zero. Solid vertical lines indicate the week when disruption started and the week when the system was 

fully restored. Shaded regions denote an interval confidence at 95% level around estimates. The dotted line was included 

instead of the dummy intentionally left out from the regression. Figure (a) shows the effects from the origin-station 

dataset only. Figure (b) shows the effects from the destination-station dataset only. The analysis was restricted to 10 

weeks after disruption to avoid the effects of the global pandemic Covid-19.  

 

Figure A-2. Evolution of bike-sharing and subway ridership  

(Index: 2019-Q1 = 100) 

 

 
Note: The Figure reports the quarterly number of bike-sharing and subway ridership indexed to the first 

quarter of 2019. Series not seasonally adjusted. 
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Table A-1. Robustness test, disruption effects on a placebo sample 
 Dependent variable: 

 ln(Journeys) 
 Origin-station Destination-station 
 (1) (2) (3) (4) 

During*Distance -0.005 -0.003 0.001 -0.002 

 (0.003) (0.004) (0.003) (0.002) 

After*Distance 0.0004 -0.002 0.001 -0.005* 

 (0.006) (0.002) (0.003) (0.002) 

During -0.040*** -0.318*** -0.034*** -0.322*** 

 (0.012) (0.015) (0.012) (0.016) 

After 0.023** 0.062*** 0.035*** 0.056*** 

 (0.010) (0.006) (0.010) (0.007) 

Distance -82.922*** 2.274 -98.602*** 1.783 

 (0.002) (3.593) (0.001) (5.196) 

Capacity 0.352*** -0.009 0.323*** -0.006 

 (0.000) (0.015) (0.000) (0.017) 

E-station -1.753*** 0.050 -1.588*** 0.030 

 (0.000) (0.076) (0.000) (0.084) 

Distance to cycleway -0.018*** 0.001 -0.019*** 0.0004 

 (0.000) (0.001) (0.000) (0.001) 

Density 3.556*** -0.105 2.954*** -0.068 

 (0.000) (0.154) (0.000) (0.156) 

Subscriptions 0.001 0.014*** 0.001 0.013*** 

 (0.001) (0.001) (0.001) (0.001) 

Constant -2.182*** -0.944*** 0.766*** -0.951*** 

 (0.103) (0.113) (0.095) (0.127) 

Stations FE Yes Yes Yes Yes 

Week FE Yes Yes Yes Yes 

Stations' trend No Yes No Yes 

Observations 9,467 9,467 9,467 9,467 

R2 0.950 0.960 0.950 0.959 

Adjusted R2 0.947 0.957 0.948 0.956 

Note: The Table reports the estimated impact of public transport disruption on bike-sharing adoption using 

the placebo dataset. Rows 2 and 4 show the estimates of β1 and β2 from equation (1), respectively. Distance 

is the planar distance between subway and docking stations. Controls include docking stations for e-bikes, 

station total capacity, distance to the closest cycleway, the number of docking stations in a radius of 300m 

(Density), and the number of new subscriptions into the program. Stations’ trend control for the quadratic 

approximation of outcome’s trend. The analysis was restricted to 10 weeks after disruption to avoid the 

effects of the global pandemic Covid-19. Cluster standard errors per docking station were applied. 

Significance levels are represented as follows: *p<0.1; **p<0.05; ***p<0.01. 



Table A-2. Sensitivity analysis to various levels of spatial integration

 Dependent variable: ln(Journeys) 

 During  After  During  After 

 Origin Destination  Origin Destination  Origin Destination  Origin Destination 
 (1) (2)  (3) (4)  (1) (2)  (3) (4) 

Panel A: Substitutes  Panel B: Complement 

200m 0.080 (0.110) 0.006 (0.112)  0.108 (0.098) 0.117 (0.090)  -0.101*** (0.030) -0.102*** (0.033)  0.145*** (0.027) 0.162*** (0.027) 

400m -0.049 (0.058) -0.023 (0.061)  0.117** (0.051) 0.063 (0.053)  -0.095** (0.042) -0.117*** (0.043)  0.130*** (0.040) 0.172*** (0.033) 

600m -0.034 (0.039) -0.046 (0.037)  0.091*** (0.035) 0.103*** (0.034)  -0.086 (0.065) -0.067 (0.064)  0.146** (0.058) 0.199*** (0.050) 

800m -0.057* (0.032) -0.067** (0.031)  0.114*** (0.028) 0.124*** (0.027)  -0.061 (0.091) -0.097 (0.087)  0.111 (0.089) 0.159** (0.080) 

1000m -0.083*** (0.029) -0.086*** (0.029)  0.130*** (0.025) 0.144*** (0.025)  0.033 (0.149) 0.016 (0.131)  0.076 (0.150) 0.083 (0.116) 

1200m -0.104*** (0.027) -0.101*** (0.028)  0.136*** (0.023) 0.152*** (0.023)  0.212 (0.254) 0.101 (0.249)  -0.188 (0.290) 0.106 (0.196) 

Panel C: First-mile  Panel D: Last-mile 

200m -0.131** (0.063) -0.047 (0.056)  0.180*** (0.051) 0.112** (0.048)  -0.039 (0.059) -0.128* (0.070)  0.082* (0.049) 0.118** (0.058) 

400m -0.160*** (0.050) -0.118** (0.056)  0.205*** (0.036) 0.148*** (0.045)  -0.040 (0.052) -0.104** (0.051)  0.101** (0.045) 0.211*** (0.044) 

600m -0.211*** (0.054) -0.204*** (0.057)  0.226*** (0.043) 0.165*** (0.047)  -0.141** (0.056) -0.148** (0.058)  0.164*** (0.045) 0.202*** (0.046) 

800m -0.225*** (0.065) -0.206*** (0.070)  0.265*** (0.055) 0.211*** (0.056)  -0.108* (0.059) -0.129* (0.072)  0.182*** (0.053) 0.232*** (0.053) 

1000m -0.189** (0.092) -0.196** (0.077)  0.243*** (0.075) 0.203*** (0.067)  -0.054 (0.077) -0.110 (0.097)  0.151** (0.070) 0.159** (0.071) 

1200m -0.099 (0.112) -0.102 (0.095)  0.182* (0.104) 0.188** (0.082)  0.058 (0.101) -0.079 (0.122)  0.113 (0.088) 0.165* (0.099) 

Controls Yes Yes  Yes Yes  Yes Yes  Yes Yes 

Stations FE Yes Yes  Yes Yes  Yes Yes  Yes Yes 

Time FE Yes Yes  Yes Yes  Yes Yes  Yes Yes 

Stations' trend Yes Yes  Yes Yes  Yes Yes  Yes Yes 

Note: The Table reports the estimated impacts of public transport disruption on bike-sharing adoption by each type of bike journeys for different measures of spatial integration with subway 

system (from 200m to 1200m each 200m). Columns (1) and (2) report the estimates of 𝛽1 while columns (2) and (3) reports 𝛽2 estimates from equation (1). Columns (1) and (3) in each panel 

refer to the estimates using the origin-station dataset only. Columns (2) and (4) refer to the estimates using the destination-station dataset only. Panel A reports the effects for substitute journeys 

only defined as trips that start and end within the spatial coverage of the subway network that corresponds to the specified row. Panel B refers to complement journeys, i.e., bike trips that do 

not start nor end within the spatial coverage of the subway system. Panels C and D include first/last mile journeys defined as trips that start/end beyond/within the spatial coverage of the 

subway and ends/starts within/beyond. Controls include docking stations for e-bikes, station total capacity, distance to the closest cycleway, and the number of docking stations in a radius of 

300m (Density). Stations’ trend refers to a quadratic approximation in the outcome time trend by docking station. Cluster standard errors per docking station were applied. Significance levels 

are represented as follows: *p<0.1; **p<0.05; ***p<0.01. 



Table A-3. Heterogenous effects 
 Dependent variable: 
 ln(Journeys) 
 During*Distance  After*Distance 

 Origin-station Destination-station  Origin-station Destination-station 
 (1) (2)  (3) (4) 

E-stations 0.060 0.063  0.032*** 0.035** 

 (0.051) (0.046)  (0.010) (0.016) 

S-stations 0.035*** 0.028***  0.009*** 0.005*** 

 (0.004) (0.006)  (0.001) (0.002) 

Low capacity 0.146*** 0.153***  0.048** 0.053*** 

 (0.030) (0.030)  (0.019) (0.014) 

High capacity 0.031*** 0.024***  0.008*** 0.004*** 

 (0.004) (0.003)  (0.001) (0.001) 

Cycleway nearby 0.079*** 0.091***  0.026** 0.025*** 

 (0.025) (0.027)  (0.010) (0.009) 

No cycleway nearby 0.033*** 0.023***  0.009*** 0.004*** 

 (0.004) (0.003)  (0.002) (0.001) 

Station’s density nearby 

One station 0.045* 0.033  0.054** 0.043*** 

 (0.025) (0.024)  (0.022) (0.016) 

> One station 0.036*** 0.031***  0.009*** 0.006*** 

 (0.005) (0.007)  (0.001) (0.002) 

> Three stations 0.040 0.063*  0.018 0.029** 

 (0.039) (0.036)  (0.015) (0.014) 

> Nine stations -0.403 -0.472  -0.771 -0.078 

 (1.979) (1.040)  (0.960) (0.977) 

Stations FE Yes Yes  Yes Yes 

Week FE Yes Yes  Yes Yes 

Stations' trend Yes Yes  Yes Yes 

Note: The Table reports the estimated impacts of public transport disruption on bike-sharing adoption for different subpopulations of 

biking stations. Columns (1) and (3) refer to the estimates using the origin-station dataset only. Columns (2) and (4) refer to the 

estimates using the destination-station dataset only. Distance refers to the inverse of the planar distance between subway and docking 

stations. Low capacity includes stations for less than 23 docks and high capacity those above 24 docks (10 and 36 are the minimum 

and maximum capacity). Cycleway nearby are docking stations connected to dedicated bike lines by no more than 300m. Density of 

additional stations in a radius of 300m consider four different alternatives: stations that share the space with exactly one additional 

station, where there are more than one, three or nine stations nearby. Stations’ trend refers to a quadratic approximation in the outcome 

time trend by docking station. Cluster standard errors per docking station were applied. Significance levels are represented as follows: 

*p<0.1; **p<0.05; ***p<0.01. 

 

 

 

 



Table A-4. Bike-sharing influence on subway ridership, alternative 

transformation of the independent variable 
 Dependent variable: 
 Subway ridership 

 Poisson 
 (1) (2) (3) (4) (5) 

ln(Bike ridership + 1)*During 0.121***     

 (0.024)     

ln(Bike ridership + 1)*After 0.032***     

 (0.006)     

ln(Substitutes + 1)*During  -0.072***    

  (0.014)    

ln(Substitutes + 1)*After  -0.018***    

  (0.005)    

ln(Complement + 1)*During   0.074***   

   (0.011)   

ln(Complement + 1)*After   0.031***   

   (0.003)   

ln(First-mile + 1)*During    0.071***  

    (0.013)  

ln(First-mile + 1)*After    0.035***  

    (0.003)  

ln(Last-mile + 1)*During     -0.028** 
     (0.014) 

ln(Last-mile + 1)*After     -0.010*** 
     (0.004) 

Controls Yes Yes Yes Yes Yes 

Fixed effects Yes Yes Yes Yes Yes 

Trend Yes Yes Yes Yes Yes 

Observations 6,403 6,403 6,403 6,403 6,403 

Log Likelihood (Mio.) -6.116 -6.151 -6.108 -6.135 -6.152 

Akaike Inf. Crit. (Mio.) 12.233 12.302 12.217 12.270 12.304 

Note: The Table reports the estimated impact of bike-sharing on subway ridership during and after 

disruption. The analysis is restricted to subway stations. Substitute journeys are defined as trips that 

start and end within the spatial coverage (300m) of the subway network. First and last-mile journeys 

are defined as trips that start/end beyond/within the spatial coverage (300m) of the subway and 

ends/starts within/beyond. Complementary journeys are bike trips that do not start nor end within the 

spatial coverage of the subway system. Controls and fixed effects included are new subscriptions, day 

of the week, month, density of docking station nearby, type subway station (transfer or intermediate 

station), district, zip code, distance to city downtown, distance to district downtown, and distance to 

closest cycleway. Trend refers to the outcome quadratic trend. Cluster standard errors at subway stations 

are considered. Significance levels are represented as follows: *p<0.1; **p<0.05; ***p<0.01. 
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